Αδύνατη ή Αόριστη Εξίσωση
πως να διαιρέσω με τον συντελεστή του άγνωστου αν έχω φτάσει σε μια μορφή κάπως έτσι . Να διαιρέσω με το 0 δεν γίνεται, δεν έχει νόημα, άρα τι κάνω; 0x ξέρω ότι κάνει 0 (οποιοσδήποτε αριθμός πολλαπλασιαστεί με το 0 κάνει 0) άρα η εξίσωση είναι ίδια με αυτή . Μα αυτό δεν μπορεί να συμβαίνει είναι Αδύνατο να συμβαίνει γι’ αυτό το λόγο μια τέτοια εξίσωση λέγεται ΑΔΥΝΑΤΗ.
Μην ξεχνάτε ότι από την αρχή που ξεκινάμε να λύσουμε μια εξίσωση αυτό που ψάχνουμε να βρούμε είναι ποιος είναι εκείνος ο αριθμός που θα μπορούσε να πάρει τη θέση του x και αν εκτελεστούν οι πράξεις στο πρώτο μέλος και στο δεύτερο να πάρω το ίδιο αποτέλεσμα και από τις δύο μεριές. Σε κάθε βήμα που κάνουμε έχουμε την ίδια εξίσωση αλλά σε πιο απλή μορφή (ισοδύναμη εξίσωση όπως λέμε εμείς οι μαθηματικοί). Κοιτώντας λοιπόν την εξίσωση καταλαβαίνουμε ότι δεν υπάρχει αριθμός που θα μπορούσε να πάρει τη θέση του x και το πρώτο μέλος να γίνει ίσο με το δεύτερο. Αφού με οποιονδήποτε αριθμό στη θέση του x το πρώτο μέλος κάνει πάντα 0 ενώ το δεύτερο είναι 169. Συμπέρασμα, “Η ΑΔΥΝΑΤΗ ΔΕΝ ΕΧΕΙ ΛΥΣΕΙΣ” και πως καταλαβαίνουμε αν μια εξίσωση είναι αδύνατη; Το καταλαβαίνουμε όταν καταλήγει στη μορφή με β οποιοδήποτε αριθμό διαφορετικό του μηδενός ().
Σκεφτόμαστε τώρα κι αν μια εξίσωση καταλήξει στη μορφή ; Γιατί μέχρι τώρα είδαμε
Αν φτάσει στη μορφή ,, διαιρώ με το συντελεστή του άγνωστου και βρίσκω x=13.
Αν φτάσει στη μορφή , , , η εξίσωση είναι αδύνατη (δεν έχει λύσεις) κι
Αν φτάσει στη μορφή , οποιοσδήποτε αριθμός και να πάρει τη θέση του x το πρώτο μέλος θα κάνει 0, όσο και το δεύτερο. Δηλαδή το πρώτο μέλος “ταυτίζεται” με το δεύτερο για όλους τους αριθμούς. Γι’ αυτό το λόγο η εξίσωση που καταλήγει σε αυτή τη μορφή λέγεται “Ταυτότητα” ή και “Αόριστη” και έχει άπειρες λύσεις, όλους τους αριθμούς.
Έτσι λοιπόν μια πρωτοβάθμια εξίσωση μπορεί
- να έχει μια και μοναδική λύση ()
- να μην έχει καμία λύση ( )
- να έχει λύσεις όλους τους αριθμούς ( )
Αφού ολοκληρώσαμε μπορείτε να δείτε σχηματικά τα βήματα που ακολουθούμε για την επίλυση μιας εξίσωσης
Διάβασα την θεωρία…
το διάβασα
πολύ ωραία παρουσίαση
Το διάβασα.
το διάβασα
Κ.Δ κ.Δουλιγέρη το διαβασα
Μικαέλα Β2
Το διάβασα…
Διάβασα(Μυρτώ Β2)
Το διάβασα
Το διαβασα
Χρυσανθη Β4
Το διαβασα…
το διάβασαα
το είδα
Το διάβασα
Όλα καλά
#OK
Διαβασα την θεωρια!
Το διάβασα
Είπαμε όχι ολόκληρο το Επώνυμο, μη με βάζεις να διορθώνω όλη την ώρα 🙂
Τα διάβασα
Το διάβασα
Το διάβασα
Το διαβασα!
Ήταν ένα πολύ καλό άρθρο για επανάληψη
το διάβασα
Το διάβασα
Το διαβασα.
Το διάβασα
ΟΚ. Το διάβασα.
Το διάβασα!!
το διάβασα
Το διάβασα 🙂
το διάβασα
το διάβασα
Το διάβασα
ΤΟ ΔΙΑΒΑΣΑ!
Θανάσης Καράμπελας Β2
το διάβασα
Οκ το διάβασα
Το διάβασα
Το διάβασα…
ok
το διαβασα…………
Το διαβασαα
το διάβασα
το διάβασα
Το διαβασα
Το διάβασα 🙂 (όσο περίεργο και αν φαίνεται)
Το διάβασα πολύ καλή εξήγηση !
Ήθελα να ρωτήσω , το -8 από που προκύπτει μετά τον χωρισμό γνωστών από αγνώστους; Ευχαριστώ πολύ !
Το -8 προέκυψε στο προηγούμενο βήμα που βγάζαμε τις παρενθέσεις. Εκεί είχαμε -4(χ+2) κάναμε επιμεριστική ιδιότητα για να φύγει η παρένθεση οπότε το -4 πολλαπλασιάστηκε με το χ κι έγινε -4χ αλλά πολλαπλασιάστηκε και με το +2 κι έγινε -4×2=-8
Σας ευχαριστώ πολύ για την απάντηση . Σχολίασα πολύ γρήγορα, πριν κοιτάξω προσεχτικά την άσκηση . Έχετε δίκιο !
Θα μπορούσατε να κάνετε μια αντίστοιχη επεξήγηση για εξισώσεις δεύτερου βαθμού ; Είδα ότι υπάρχει κάποιο σχετικό άρθρο αλλά δεν μπορω να το ανοίξω . Σας ευχαριστώ πολύ για την δουλειά σας !
Για δοκίμασε αυτό:
http://mathland.gr/%ce%b5%cf%80%ce%af%ce%bb%cf%85%cf%83%ce%b7-%ce%b4%ce%b5%cf%85%cf%84%ce%b5%cf%81%ce%bf%ce%b2%ce%ac%ce%b8%ce%bc%ce%b9%ce%b1%cf%82-%ce%b5%ce%be%ce%af%cf%83%cf%89%cf%83%ce%b7%cf%82/